

When, Where, and How Much Juvenile Salmonid Habitat is There on the Willamette River?

James White¹, Laurel Stratton¹, Rose Wallick¹, Jim Peterson², Toby Kock³

¹ – USGS Oregon Water Science Center
² – Oregon State University/USGS Co-operative
³ – USGS Western Fisheries Research Center

jameswhite@usgs.gov

U.S. Department of the Interior U.S. Geological Survey

Many people involved and contributing to study

<u>USGS ORWSC</u>: Gabriel Gordon, Brandon Overstreet, Stewart Rounds, Adam Stonewall, Greg Lind, Mackenzie Keith, Krista Jones <u>USACE</u>: Rich Piaskowski, Jacob Macdonald, Greg Taylor, Jeff Balantine, Norman Buccola, Paul Sclafani <u>Oregon State University</u>: Jessica Pease, Tyrell DeWeber <u>USGS WFRC</u>: Gabriel Hansen, Russ Perry <u>NOAA Fisherie</u>s: Anne Mullan <u>ODFW</u>: Luke Whitman, Brian Bangs

Improve understanding of juvenile Chinook and steelhead habitat dynamics and how it varies with streamflow

- How much habitat is available for these salmonids to use throughout the year?
- How would potential changes of instream flow targets affect habitat availability?

USGS

Hydraulic Modeling

Bathymetry (QSI TB lidar + USGS sonar)

≥USGS

Continuous Velocity

Simulating flows from below current BiOP targets to annual peak flows (80,000 cfs at Salem, for reference) Two-dimensional hydraulic model reaches

Total covering about 200km of river

Habitat Modeling

Methods – Habitat Model Depth Velocity Slope Habitat Slope (degrees) High : 20 Low:0 Depth (m) Velocity (m/s) 0 **≥USGS**

Methods – Habitat Model

Species		Size Class	Criteria	Narrow	Median	Broad
	Chinook salmon	Pre-smolt (>60mm)	Depth (ft)	0.15-2.25	0.15-3.5	0.15-Inf
			Velocity (ft/s)	0-1.25	0-1.63	0-3
			Bed Slope	<0.4	<0.55	Any
	Chinook salmon	Fry (<60mm)	Depth (ft)	0.15-2.0	0.15-3.5	0.15-5
			Velocity (ft/s)	0-0.5	0-1.25	0-1.5
			Bed Slope	<0.4	<0.55	Any
	Steelhead	Pre-smolt (>60mm)	Depth (ft)	0.15-1	0.15-1	0.15-Inf
			Velocity (ft/s)	0-1.75	0-3.25	0-3.5
			Bed Slope	NA	NA	NA
	Steelhead	Fry (<60mm)	Depth (ft)	0.25-1.25	0.25-2	0.25-5
			Velocity (ft/s)	0-0.5	0-1.25	0-2
			Bed Slope	NA	NA	NA

Preliminary Results – subject to revision

Methods – Habitat Model

Depth Metrics

Velocity Metrics

Preliminary Results – subject to revision

Storm Flow

USGS

USGS

6,000 cubic feet per second, 3 percentile flow

18,000 cubic feet per second, 60 percentile flow

80,000 cubic feet per second, 96 percentile flow

45°1

45

Winter Flow

Storm Flow

Integrating Temperature Into Habitat

Table 1. Summary of water temperature thresholds for juvenile and adult Chinook salmon for use in habitat assessments in the Willamette River, Oregon.

Juvenile re	earing and growth	Adult migration		
Temperature range (°C)	Effects on fish	Temperature range (°C)	Effects on fish	
≥24.1° C	Mortality	≥23.1° C	Mortality	
20.1–24° C	Increased stress, decreased growth, disease	19.1–23° C	Migration impaired	
10.1–20 °C	Optimal	12.1–19° C	Optimal	
≤10 °C	Safe, but decreased growth	≤12° C	Safe, preferred for spawning	

Do Not Cite

≥USGS

Summary of Habitat Modeling Results

- Habitat response to increasing streamflow varies throughout Willamette
 - Habitat on upstream of Corvallis consistently increase with added streamflow, while reaches downstream decrease from low-moderate flows
 - Primarily driven by local geomorphology → bars, channel complexity, & floodplain accessibility
- Temperature, not hydraulic habitat, is most limiting factor in summer
- Habitat availability is greatest at highest flows. This is most pronounced upstream of Corvallis.
 - Results highlight habitat at low and moderate flows is most limiting

Questions

jameswhite@usgs.gov

USGS

